12. Homework Assignment

Dynamical Systems II

Bernold Fiedler, Hannes Stuke
http://dynamics.mi.fu-berlin.de/lectures/
due date: Thursday, January 29, 2015

Problem 1: Consider the parameter-dependent vector field

$$\dot{x} = 2(x+y)^2 + x - y - \lambda,
\dot{y} = -x + y - \lambda.$$

Sketch the flow for small $|\lambda|$ and justify your claims.

Problem 2: Let $\mathcal{M}^c = \operatorname{graph} \psi$ be a \mathcal{C}^1 center manifold of the flow ϕ^t to the vector field

$$\dot{x} = Ax + q(x)$$

with g(0) = 0, Dg(0) = 0.

Here $\psi: E^c \to E^h$ where $\mathbb{R}^N = E^c \oplus E^h$ is the eigenspace decomposition w.r.t. A.

Prove that \mathcal{M}^c is tangential to E^c , i.e. $\psi'(0) = 0$.

Hint: Use the invariance of \mathcal{M}^c under the flow ϕ^t .

Problem 3: Consider the set M of matrices defined by

$$M := \left\{ \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}, a, b, c \in \mathbb{R} \right\}.$$

Show, that for each $A \in M$ the set $\{\exp(A^T t), t \in \mathbb{R}\}$ is a subgroup of SO(3). Describe this group. SO(3) denotes the set of orthogonal matrices with determinant one.

Problem 4: Consider the Lie group $SL_2(\mathbb{R})$, i.e. the set of real 2×2 matrices with determinant one.

(i) Show, that the Lie algebra $\mathfrak{sl}_2(\mathbb{R})$, that is the tangent space of $SL_2(\mathbb{R})$ at Id is the space of real 2×2 matrices with trace zero.

1

(ii) Is the matrix exponential exp : $\mathfrak{sl}_2(\mathbb{R}) \to SL_2(\mathbb{R})$ surjective?